Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Parasitol ; 109(4): 362-376, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37527277

ABSTRACT

Some parasites manipulate their host's phenotype to enhance predation rates by the next host in the parasite's life cycle. Our understanding of this parasite-increased trophic transmission is often stymied by study-design challenges. A recurring difficulty has been obtaining uninfected hosts with a coevolutionary history with the parasites, and conducting experimental infections that mimic natural processes. In 1996, Lafferty and Morris provided what has become a classic example of parasite-increased trophic transmission; they reported a positive association between the intensity of a brain-infecting trematode (Euhaplorchis californiensis) in naturally infected California killifish (Fundulus parvipinnis) and the frequency of conspicuous behaviors, which was thought to explain the documented 10-30× increase in predation by the final host birds. Here, we address the primary gap in that study by using experimental infections to assess the causality of E. californiensis infection for increased conspicuous behaviors in F. parvipinnis. We hatched and reared uninfected F. parvipinnis from a population co-occurring with E. californiensis, and infected them 1-2 times/week over half their life span with E. californiensis and a small cyathocotylid trematode (SMCY) that targets the host's muscle tissue. At 3 time points throughout the hosts' lives, we quantified several conspicuous behaviors: contorting, darting, scratching, surfacing, and vertical positioning relative to the water's surface. Euhaplorchis californiensis and SMCY infection caused 1.8- and 2.5-fold overall increases in conspicuous behaviors, respectively. Each parasite was also associated with increases in specific conspicuous behaviors, particularly 1.9- and 1.4-fold more darting. These experimental findings help solidify E. californiensis-F. parvipinnis as a classic example of behavioral manipulation. Yet our findings for E. californiensis infection-induced behavioral change were less consistent and strong than those previously documented. We discuss potential explanations for this discrepancy, particularly the idea that behavioral manipulation may be most apparent when fish are actively attacked by predators. Our findings concerning the other studied trematode species, SMCY, highlight that trophically transmitted parasites infecting various host tissues are known to be associated with conspicuous behaviors, reinforcing calls for research examining how communities of trophically transmitted parasites influence host behavior.


Subject(s)
Fish Diseases , Fundulidae , Trematoda , Trematode Infections , Animals , Trematode Infections/epidemiology , Trematode Infections/veterinary , Trematode Infections/parasitology , Fish Diseases/epidemiology , Fish Diseases/parasitology , Trematoda/genetics , Brain/parasitology , Fundulidae/parasitology , Host-Parasite Interactions
2.
J Parasitol ; 106(1): 188-197, 2020 02.
Article in English | MEDLINE | ID: mdl-32097105

ABSTRACT

Some parasite species alter the behavior of intermediate hosts to promote transmission to the next host in the parasite's life cycle. This is the case for Euhaplorchis californiensis, a brain-encysting trematode parasite that causes behavioral changes in the California killifish (Fundulus parvipinnis). These manipulations increase predation by the parasite's final host, piscivorous marsh birds. The mechanisms by which E. californiensis achieves this manipulation remain poorly understood. As E. californiensis cysts reside on the surface of the killifish's brain, discerning regional differences in parasite distribution could indicate mechanisms for host control. In this study, we developed a method for repeated experimental infections. In addition, we measured brain-region specific density using a novel methodology to locate and quantify parasite infection. We show that E. californiensis cysts are non-randomly distributed on the fish brain, aggregating on the diencephalon/mesencephalon region (a brain area involved in controlling reproduction and stress coping) and the rhombencephalon (an area involved in controlling locomotion and basal physiology). Determining causal mechanisms behind this pattern of localization will guide future research examining the neurological mechanisms of parasite-induced host manipulation. These findings suggest that parasites are likely targeting the reproductive, monoaminergic, and locomotor systems to achieve host behavioral manipulation.


Subject(s)
Brain Diseases/veterinary , Brain/parasitology , Fish Diseases/parasitology , Fundulidae/parasitology , Heterophyidae/physiology , Trematode Infections/veterinary , Animals , Behavior, Animal , Brain Diseases/parasitology , Fish Diseases/transmission , Snails/parasitology , Trematode Infections/parasitology , Trematode Infections/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...